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Recap of Last Lecture

°Shared memory processors
• Caches in individual processors must be kept

coherent -- multiple cached copies of same
location must be kept equal.

• Requires clever hardware (see CS258).

• Distant memory much more expensive to access.

°Shared memory programming
• Starting, stopping threads.

• Synchronization with barriers, locks.

• OpenMP is the emerging standard for the shared
memory parallel programming model.



Outline

° Distributed Memory Architectures
• Topologies

• Cost models

° Distributed Memory Programming
• Send and receive operations

• Collective communication

° Sharks and Fish Example
• Gravity



History and Terminology



Historical Perspective

° Early machines were:
• Collection of microprocessors.

• Communication was performed using bi-directional queues
between nearest neighbors.

° Messages were forwarded by processors on path.

° There was a strong emphasis on topology in
algorithms, in order to minimize the number of hops.



Network Analogy

° To have a large number of transfers occurring at
once, you need a large number of distinct wires.

° Networks are like streets:
• Link = street.

• Switch = intersection.

• Distances (hops) = number of blocks traveled.

• Routing algorithm = travel plan.

° Properties:
• Latency: how long to get between nodes in the network.

• Bandwidth: how much data can be moved per unit time:

• Bandwidth is limited by the number of wires and the rate at which
each wire can accept data.



Characteristics of a Network

° Topology (how things are connected)
• Crossbar, ring, 2-D and 2-D torus, hypercube, omega network.

° Routing algorithm:
• Example: all east-west then all north-south (avoids deadlock).

° Switching strategy:
• Circuit switching: full path reserved for entire message, like the

telephone.

• Packet switching: message broken into separately-routed
packets, like the post office.

° Flow control (what if there is congestion):
• Stall, store data temporarily in buffers, re-route data to other

nodes, tell source node to temporarily halt, discard, etc.



Properties of a Network

° Diameter:  the maximum (over all pairs of nodes) of
the shortest path between a given pair of nodes.

° A network is partitioned into two or more disjoint
sub-graphs if some nodes cannot reach others.

° The bandwidth of a link =   w * 1/t
• w is the number of wires

• t is the time per bit

° Effective bandwidth is usually lower due to packet
overhead.

° Bisection bandwidth:  sum of the bandwidths of the
minimum number of channels which, if removed,
would partition the network into two sub-graphs.
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Network Topology
° In the early years of parallel computing, there was

considerable research in network topology and in
mapping algorithms to topology.

° Key cost to be minimized in early years:  number of
“hops” (communication steps) between nodes.

° Modern networks hide hop cost (ie, “wormhole
routing”), so the underlying topology is no longer a
major factor in algorithm performance.

° Example:  On IBM SP system, hardware latency
varies from 0.5 usec to 1.5 usec, but user-level
message passing latency is roughly 36 usec.

However, since some algorithms have a natural
topology, it is worthwhile to have some background
in this arena.



Linear and Ring Topologies

° Linear array

• Diameter = n-1; average distance ~ n/3.

• Bisection bandwidth = 1.

° Torus or Ring

• Diameter = n/2; average distance ~ n/4.

• Bisection bandwidth = 2.

• Natural for algorithms that work with 1D arrays.



Meshes and Tori 

° 2D
• Diameter =   2 *     n
• Bisection bandwidth =   n

             2D mesh                                           2D torus

° Often used as network in machines.
° Generalizes to higher dimensions (Cray T3D used 3D Torus).
° Natural for algorithms that work with 2D and/or 3D arrays.



Hypercubes

° Number of nodes n = 2d   for dimension d.
• Diameter = d.

• Bisection bandwidth = n/2.

°     0d       1d       2d           3d                  4d

° Popular in early machines (Intel iPSC, NCUBE).
• Lots of clever algorithms.

• See 1996 notes.

° Greycode addressing:
• Each node connected to

d others with 1 bit different.
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Trees

° Diameter = log n.

° Bisection bandwidth = 1.

° Easy layout as planar graph.

° Many tree algorithms (e.g., summation).

° Fat trees avoid bisection bandwidth problem:
• More (or wider) links near top.

• Example: Thinking Machines CM-5.



Butterflies

° Diameter = log n.

° Bisection bandwidth = n.

° Cost: lots of wires.

° Used in BBN Butterfly.

° Natural for FFT.
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Evolution of Distributed Memory Multiprocessors

° Special queue connections are being replaced by
direct memory access (DMA):

• Processor packs or copies messages.

• Initiates transfer, goes on computing.

° Message passing libraries provide store-and-forward
abstraction:

• Can send/receive between any pair of nodes, not just along one
wire.

• Time proportional to distance since each processor along path
must participate.

° Wormhole routing in hardware:
• Special message processors do not interrupt main processors

along path.

• Message sends are pipelined.

• Processors don’t wait for complete message before forwarding.



Performance Models



PRAM

° Parallel Random Access Memory.

° All memory access operations complete in one clock
period -- no concept of memory hierarchy (“too good
to be true”).

° OK for understanding whether an algorithm has
enough parallelism at all.

° Slightly more realistic:  Concurrent Read Exclusive
Write (CREW) PRAM.



Latency and Bandwidth Model

° Time to send message of length n is roughly.

° Topology is assumed irrelevant.

° Often called “α−βα−βα−βα−β model” and written

° Usually αααα >> ββββ >> time per flop.
• One long message is cheaper than many short ones.

• Can do hundreds or thousands of flops for cost of one message.

° Lesson:  Need large computation-to-communication
ratio to be efficient.

Time = latency + n*cost_per_word
         = latency + n/bandwidth

Time = αααα + n*ββββ

α +α +α +α + n∗β  <<  ∗β  <<  ∗β  <<  ∗β  <<  n∗(α + 1∗β)∗(α + 1∗β)∗(α + 1∗β)∗(α + 1∗β)



Example communication costs

° α α α α and ββββ measured in units of flops, ββββ measured per 8-byte word

Machine                          Year          α           β              Mflop rate per proc

    CM-5                             1992     1900       20                            20
    IBM SP-1                      1993     5000        32                          100
    Intel Paragon                1994     1500          2.3                         50
    IBM SP-2                      1994     7000        40                          200
    Cray T3D (PVM)           1994     1974        28                            94
    UCB NOW                    1996     2880        38                          180

    SGI Power Challenge   1995     3080        39                          308
    SUN E6000                   1996    1980           9                         180



A more detailed performance model: LogP

° L: latency across the network.

° o: overhead (sending and receiving busy time).

° g: gap between messages (1/bandwidth).

° P: number of processors.

° People often group overheads into latency
(α, βα, βα, βα, β model).

° Real costs more complicated -- see Culler/Singh,
Chapter 7.
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Message Passing Libraries

° Many “message passing libraries” available
• Chameleon, from ANL.

• CMMD, from Thinking Machines.

• Express, commercial.

• MPL, native library on IBM SP-2.

• NX, native library on Intel Paragon.

• Zipcode, from LLL.

• PVM, Parallel Virtual Machine, public, from ORNL/UTK.

• Others...

• MPI, Message Passing Interface, now the industry standard.

° Need standards to write portable code.

° Rest of this discussion independent of which library.

° Will have a detailed MPI lecture later.



Implementing Synchronous Message Passing

° Send operations complete after matching receive
and source data has been sent.

° Receive operations complete after data transfer is
complete from matching send.

                                                                     source                                           destination

1) Initiate send                                     send (Pdest, addr, length,tag)    rcv(Psource, addr,length,tag)

2) Address translation on Pdest

3) Send-Ready Request                                                              send-rdy-request

4) Remote check for posted receive                                                                  tag match

5) Reply transaction

                                                                                                            receive-rdy-reply

6) Bulk data transfer

                                                      time

                                                                                                data-xfer



Example: Permuting Data

° Exchanging data between Procs 0 and 1, V.1: What goes wrong?

Processor 0                                                    Processor 1
     send(1, item0, 1, tag1)                                     send(0, item1, 1, tag2)
     recv( 1, item1, 1, tag2)                                     recv( 0, item0, 1, tag1)

° Deadlock
° Exchanging data between Proc 0 and 1, V.2:

 Processor 0                                                   Processor 1
      send(1, item0, 1, tag1)                                  recv(0, item0, 1, tag1)
      recv( 1, item1, 1, tag2)                                  send(0,item1, 1, tag2)

° What about a general permutation, where Proc j wants to send to
   Proc s(j), where s(1),s(2),…,s(P) is a  permutation of 1,2,…,P?



Implementing Asynchronous Message Passing

° Optimistic single-phase protocol assumes the
destination can buffer data on demand.

                                                                     source                                           destination

1) Initiate send                                        send (Pdest, addr, length,tag)

2) Address translation on Pdest

3) Send Data  Request                                                              data-xfer-request

                                                                                                                               tag match

                                                                                                                               allocate

4) Remote check for posted receive

5) Allocate buffer (if check failed)

6) Bulk data transfer

                                                                                                                rcv(Psource, addr, length,tag)

                                                      time



Safe Asynchronous Message Passing

° Use 3-phase protocol

° Buffer on sending side

° Variations on send completion

• wait until data copied from user to system buffer

• don’t wait -- let the user beware of modifying data

                                                                     source                                           destination

1) Initiate send                                 send (Pdest, addr, length,tag)       rcv(Psource, addr, length,tag)

2) Address translation on Pdest

3) Send-Ready Request                                                              send-rdy-request

4) Remote check for posted receive         return and continue                         tag match

             record send-rdy                                     computing

5) Reply transaction

                                                                                                            receive-rdy-reply

6) Bulk data transfer

                                                      time

                                                                                                data-xfer



Example Revisited: Permuting Data

° Processor j sends item to Processor s(j), where
     s(1),…,s(P) is a permutation of 1,…,P

Processor j
     send_asynch(s(j), item, 1, tag)
     recv_block( ANY,  item, 1, tag)

 ° What could go wrong?
° Need to understand semantics of send and receive.
° Many flavors available.



Other operations besides send/receive

° “Collective Communication” (more than 2 procs)
• Broadcast data from one processor to all others.

• Barrier.

• Reductions (sum, product, max, min, boolean and, #, …), where #
is any “associative” operation.

• Scatter/Gather.

• Parallel prefix -- Proc j owns x(j) and computes y(j) = x(1) # x(2) #
… # x(j).

• Can apply to all other processors, or a user-define subset.

• Cost = O(log P) using a tree.

° Status operations
• Enquire about/Wait for asynchronous send/receives to complete.

• How many processors are there?

• What is my processor number?



Example: Sharks and Fish

° N fish on P procs, N/P fish per processor
• At each time step, compute forces on fish and move them

° Need to compute gravitational interaction
• In usual n^2 algorithm, every fish depends on every other fish.

• Every fish needs to “visit” every processor, even if it “lives” on
just one.

° What is the cost?



Two Algorithms for Gravity: What are their costs?

Algorithm 1
     
        Copy local Fish array of length N/P to Tmp array
        for j = 1 to N
              for k = 1 to N/P,   Compute force of Tmp(k) on Fish(k)
              “Rotate” Tmp by 1  
                     for k=2 to N/P, Tmp(k) <= Tmp(k-1)  
                     recv(my_proc - 1,Tmp(1))
                     send(my_proc+1,Tmp(N/P)

Algorithm 2

        Copy local Fish array of length N/P to Tmp array
        for j = 1 to P
              for k=1 to N/P, for m=1 to N/P, Compute force of Tmp(k) on Fish(m)
              “Rotate” Tmp by N/P 
                    recv(my_proc - 1,Tmp(1:N/P))
                    send(my_proc+1,Tmp(1:N/P))

What could go wrong?  (be careful of overwriting Tmp)



More Algorithms for Gravity

° Algorithm 3 (in sharks and fish code):
• All processors send their Fish to Proc 0.

• Proc 0 broadcasts all Fish to all processors.

° Tree-algorithms:
• Barnes-Hut, Greengard-Rokhlin, Anderson.

• O(N log N) instead of O(N^2).

• Parallelizable with cleverness.

• “Just” an approximation, but as accurate as you like (often only a
few digits are needed, so why pay for more).

• Same idea works for other problems where effects of distant
objects becomes “smooth” or “compressible”:

- electrostatics, vorticity, …

- radiosity in graphics.

- anything satisfying Poisson equation or something like it.


